Полимерные и гибридные конденсаторы.

Конденсаторы, построенные на основе проводящих полимеров, характеризуются отличными электрическими характеристиками и высокой надежностью. Гибридная технология сочетает в себе преимущества электролитических и полимерных конденсаторов. В данной статье рассматриваются основные вопросы, касающиеся полимерных и гибридных конденсаторов.

С первого взгляда конденсаторы кажутся достаточно простыми электронными компонентами, но подобрать оптимальный конденсатор с каждым годом становится все сложнее. Дело в том, что за последние несколько лет разнообразие присутствующих на рынке компонентов значительно расширилось. В значительной степени это стало следствием развития полимерных конденсаторов (рис. 1).

Полимерные и гибридные конденсаторы.

Рис. 1. Разнообразие конденсаторов значительно увеличилось, в том числе благодаря развитию полимерных конденсаторов

В полимерных конденсаторах проводящий слой полимера выступает в качестве электролита. В гибридных конденсаторах полимер используется в сочетании с жидким электролитом. В любом случае, полимерные конденсаторы превосходят обычные электролитические и керамические конденсаторы по целому ряду характеристик:

  • по электрическим параметрам;
  • по уровню стабильности;
  • по долговечности;
  • по надежности;
  • по безопасности;
  • по стоимость жизненного цикла.

Различные полимерные и гибридные конденсаторы оказываются весьма близки по уровню напряжений, частотным характеристикам, рабочим параметрам окружающей среды и другим требованиям эксплуатации. В данной статье даются рекомендации по выбору оптимального конденсатора. В ней также рассматриваются конкретные приложения, в которых полимерные или гибридные конденсаторы будут более оптимальным выбором по сравнению с традиционными электролитическими или даже керамическими конденсаторами.

Конструктивные исполнения полимерных конденсаторов

Полимерные конденсаторы имеют четыре конструктивных исполнения с учетом гибридного варианта. Между собой они отличаются типом корпуса, материалами электролита и электродов.

Многослойные полимерные алюминиевые конденсаторы используют проводящий полимер в качестве электролита и имеют алюминиевый катод (рис. 2). Эти конденсаторы перекрывают диапазон рабочих напряжений 2…35 В и характеризуются емкостью 2,2…560 мкФ. Отличительной чертой данного типа полимерных конденсаторов является их чрезвычайно низкое эквивалентное последовательное сопротивление (ESR). Например, некоторые из полимерных конденсаторов SP-Cap™ от Panasonic имеют значения ESR от 3 мОм, что является одним из самых низких значений в отрасли. Конденсаторы SP-Cap покрыты защитным слоем компаунда и предназначены для поверхностного монтажа. Благодаря хорошим электрическим характеристикам и компактному размеру они находят свое применение в различных портативных электронных устройствах и в других приложениях, требующих низкопрофильных компонентов, которые не будут мешать установке радиаторов.

Полимерные и гибридные конденсаторы.

Рис. 2. Конструкция многослойного полимерного конденсатора

Выводные полимерные алюминиевые конденсаторы также используют алюминиевые обкладки и проводящий полимер в качестве электролита, но имеют рулонную конструкцию (рис. 3).

Полимерные и гибридные конденсаторы.

Рис. 3. Конструкция выводного полимерного конденсатора

По сравнению с другими типами полимерных конденсаторов конденсаторы с рулонной конструкцией перекрывают более широкий диапазон рабочих напряжений и емкостей. Для них диапазон напряжений составляет 2,5…100 В, а диапазон емкостей 3,3…2700 мкФ. Как и рассмотренные выше многослойные полимерные конденсаторы, рулонные конденсаторы характеризуются чрезвычайно низкими значениями ESR. Некоторые из конденсаторов OS-CON™ от Panasonic имеют значения ESR мене 5 мОм (рис. 4). Существуют рулонные конденсаторы для поверхностного монтажа, хотя они все равно являются не столь компактными, как многослойные полимерные конденсаторы.

Полимерные и гибридные конденсаторы.

Рис. 4. Внешний вид конденсаторов OS-CON™ от Panasonic

Полимерные танталовые конденсаторы используют проводящий полимер в качестве электролита, а катод у них изготовлен из тантала (рис. 5).

Полимерные и гибридные конденсаторы.

Рис. 5. Конструкция полимерного танталового конденсатора

Полимерные танталовые конденсаторы охватывают диапазон рабочих напряжений 2…35 В и диапазон емкостей 3,9…1500 мкФ. Они также характеризуются низким значением ESR. Например, у некоторых моделей конденсаторов POSCAP™ от Panasonic значения ESR начинаются от 5 мОм (рис. 6). Конденсаторы POSCAP предназначены для поверхностного монтажа и являются самыми компактными на рынке. Например, размер POSCAP M составляет всего 2,0 x 1,25 мм. Существуют также и другие варианты типоразмеров.

Полимерные и гибридные конденсаторы.

Рис. 6. Внешний вид конденсаторов POSCAP™ от Panasonic

Полимерные гибридные алюминиевые конденсаторы. Как следует из их названия, эти конденсаторы используют комбинацию жидкого и твердого электролита (проводящего полимера) и алюминий в качестве катода (рис. 7). Такая конструкция заимствует лучшие качества у различных типов конденсаторов. В частности полимер обеспечивает низкое значение ESR. В то же время, жидкая часть электролита может выдерживать высокие напряжения и гарантирует повышенную удельную емкость благодаря большой эффективной площади электродов. Гибридные конденсаторы характеризуются диапазоном рабочих напряжений 25…80 В и емкостью 10…330 мкФ. ESR у гибридных конденсаторов составляет 20…120 мОм, что выше, чему других полимерных конденсаторов, однако такой результат можно считать отличным, учитывая, что их используют в мощных приложениях.

Полимерные и гибридные конденсаторы.

Рис. 7. Конструкция гибридного полимерного алюминиевого конденсатора

Преимущества полимерных конденсаторов

Несмотря на различия в конструктивном исполнении и перечне используемых материалов, все рассмотренные выше типы полимерных конденсаторов имеют целый ряд общих важных достоинств:

  • Отличные частотные характеристики. Благодаря сверхнизким значениям ESR, полимерные конденсаторы имеют минимальный импеданс в точке резонанса (рис. 8). Низкий импеданс приводит к уменьшению пульсаций тока в силовых цепях. Испытания показали, что при сравнении полимерных конденсаторов с обычными танталовыми конденсаторами, которые также характеризуются низким последовательным сопротивлением, произошло пятикратное снижение размаха пульсаций напряжения.

Полимерные и гибридные конденсаторы.



Рис. 8. Уменьшение ESR приводит к уменьшению пульсаций в силовых цепях

  • Высокая стабильность емкости. Керамические конденсаторы с полярным диэлектриком характеризуются значительным температурным дрейфом емкости и эффектом смещения при постоянном напряжении (эффект DC-bias). Эффект DC-bias выражается в зависимости емкости от приложенного постоянного напряжения. Полимерные конденсаторы свободны от таких недостатков и сохраняют стабильное значение емкости с течением времени (рис. 6). Эта стабильность особенно важна для промышленных и автомобильных приложений, которые, как правило, подвержены значительными колебаниям рабочих температур в процессе эксплуатации. Например, бывают случаи, когда повышение температуры приводит к падению емкости керамических конденсаторов на 90%, или даже больше, что делает их малоэффективными в подобных приложениях.

Полимерные и гибридные конденсаторы.



Рис. 9. Полимерные конденсаторы отличаются великолепной температурной стабильностью и свободны от эффекта смещения DC-bias

  • В отличие от алюминиевых электролитических конденсаторов гибридные полимерные конденсаторы демонстрируют стабильность емкости и сопротивления ESR при работе с высокими частотами и низкими температурами (рис. 10).

Полимерные и гибридные конденсаторы.



Рис. 10. Гибридные конденсаторы обеспечивают стабильные значения ESR и емкости даже при температурах до -55ºC

  • Повышенная безопасность. Обычные электролитические конденсаторы не всегда обеспечивают высокий уровень безопасности из-за возможности возникновения коротких замыканий. Суть проблемы заключается в том, что вследствие электрических или механических напряжений в электролитических конденсаторах происходит нарушение целостности диэлектрической оксидной пленки. Полимерные конденсаторы обладают возможностью самовосстановления, что исключает возможность катастрофического выхода из строя. Процесс самовосстановления является следствием локального перегрева в точке пробоя. Нагрев разрушает молекулярную цепь проводящего полимера вблизи дефекта, что приводит к повышению сопротивления и формированию диэлектрического слоя, который изолирует место пробоя (рис. 11). В случае гибридных конденсаторов вступает в действие дополнительный механизм самовосстановления, который связан с повторным окислением алюминия при протекании тока на участке пробоя.



Полимерные и гибридные конденсаторы. 

Рис. 11. Механизм самовосстановления полимерных и гибридных конденсаторов

Чтобы подтвердить самовосстанавливающуюся природу полимерных и гибридных конденсаторов, было проведено множество испытаний. В одном из тестов сравнивались полимерные конденсаторы SP-Cap от Panasonic с обычными конденсаторами Tantalum-MnO2. Полимерные конденсаторы без проблем выдерживали короткие импульсы тока до 7 А, в то время как танталовые конденсаторы начинали «дымиться» уже при 3 А и загорались при 5 А. Подобное повышение безопасности имеет важные схемотехнические и финансовые последствия. Обычно, чтобы обеспечить безопасность при использовании танталовых конденсаторов, рабочее напряжение выбирается на 30-50% меньше, чем указанный для них рейтинг напряжения. Это приводит к необходимости использования более высоковольтных танталовых конденсаторов с меньшей емкостью, а значит к росту числа конденсаторов и увеличению стоимости. Для полимерных конденсаторов Panasonic, напротив, гарантируется безотказная работа даже при напряжениях 90% от номинала.

Рассмотрим отдельно преимущества гибридных полимерных конденсаторов.

Преимущества гибридных полимерных конденсаторов

Рабочие частоты современных электронных устройств постоянно увеличиваются, а их габариты наоборот уменьшаются. Это делает гибридные конденсаторы все более привлекательными для самых разнообразных приложений.

Как уже было сказано выше, гибридные конденсаторы характеризуются отличной стабильностью параметров при работе на повышенных частотах. Они также обладают и целым рядом других преимуществ, которые делают их оптимальным выбором для таких приложений как компьютерные серверы, устройства резервного копирования, а также приводы электродвигателей, блоки управления автомобильным двигателем, камеры безопасности и светодиодное освещение.

Среди достоинств гибридных конденсаторов следует выделить:

  • Компактные размеры. Учитывая тенденцию к миниатюризации электрооборудования, компактные габариты становятся все более важным достоинством конденсаторов. Гибридные конденсаторы для поверхностного монтажа, имея размеры 6,3 х 5,8 мм, могут работать с напряжением 35 В, а их емкость достигает 47 мкФ. В результате удается сэкономить значительную площадь на печатной плате. В качестве примера можно привести современный источник питания с выходным напряжением 48 В, в котором гибридные конденсаторы занимают всего 13% от площади, требуемой для размещения традиционных алюминиевых конденсаторов.
  • Высокая надежность. Кроме компактных габаритов конденсаторы также должны обеспечивать безотказную работу в жестких условиях эксплуатации. В данном случае гибридные конденсаторы превосходят эквивалентные алюминиевые электролитические и полимерные конденсаторы практически по всем показателям. В частности, гибридные конденсаторы демонстрируют более высокую устойчивость к воздействию влажности. Они также способны работать с импульсными и пусковыми токами большей амплитуды даже в условиях повышенных температур (рис. 9). В ходе испытаний исследовались характеристики гибридного конденсатора без нагрузки и с номинальным импульсным током 1300 мА. При трехкратном превышении импульсных токов (3600 мА) характеристики конденсатора изменились, однако катастрофического отказа из-за короткого замыкания не произошло.

Полимерные и гибридные конденсаторы.


Рис. 12. Гибридные конденсаторы демонстрируют высокую надежность при работе с импульсными токами

Компактность и надежность гибридных конденсаторов совместно обеспечивают значительную экономическую выгоду, несмотря на высокую стоимость этих компонентов. Например, способность выдерживать значительные импульсные токи приводит к увеличению срока службы и снижению общей стоимости на 20%. В рассмотренном выше примере с блоком питания 48 В, стоимость гибридных конденсаторов составила только 50% от стоимости алюминиевых электролитов. Такая экономия стала возможной благодаря сокращению размера печатной платы, увеличению срока службы и уменьшению стоимости гарантийного обслуживания.

Теперь, когда проанализированы основные достоинства полимерных и гибридных конденсаторов, рассмотрим основные области их применения.

Полимерные и гибридные конденсаторы для IT-инфраструктуры

Слабым звеном в оборудовании для IT-сферы являются конденсаторы, используемые в источниках питания. Наиболее распространенной причиной преждевременного отказа электролитических конденсаторов становится высыхание жидкого электролита, что является следствием длительной работы в условиях повышенной температуры. Обычные танталовые конденсаторы являются одним из возможных решений этой проблемы. Однако, как было сказано выше, танталы оказываются весьма чувствительными к перенапряжениям. По этой причине, чтобы защититься от потенциального возгорания, разработчикам приходится использовать танталы при напряжениях меньше номинального.

Другим решением проблемы высыхания электролита становятся современные полимерные конденсаторы, которые позволяют увеличить жизненный цикл и надежность IT-оборудования, такого как серверы, коммутаторы, маршрутизаторы и модемы.

Полимерные конденсаторы с рулонной конструкцией, в частности OS-CON, не имеют жидкого электролита и поэтому имеют чрезвычайно долгий срок службы. Танталовые полимерные конденсаторы, например POSCAP, не содержат кислорода. Поэтому они не склонны к возгоранию при пробое. Конденсаторы SP-Cap имеют аналогичное «безопасное» поведение при отказе.

Все три семейства полимерных конденсаторов также обладают и другими важными достоинствами, востребованными в данном сегменте электронного оборудования:

  • компактные размеры;
  • низкое сопротивление ESR;
  • способность выдерживать значительные импульсные токи;
  • значительный срок службы.

Полимерные и гибридные конденсаторы для автомобильных приложений

Полимерные конденсаторы все чаще используются в автомобильной электронике. В частности полимерные и гибридные конденсаторы от Panasonic отвечают следующим требованиям:

  • Семейства POSCAP, OS-CON, а также гибридные полимерные конденсаторы соответствуют стандартам AEC.
  • Конденсаторы производятся на сертифицированном предприятии.
  • При производстве используется Production Part Approval Process (PPAP).

Полимерные и гибридные конденсаторы для промышленных приложений

Количество электронных устройств, используемых в промышленности, постоянно растет. Это приводит к необходимости повышения надежности, в том числе и конденсаторов. Задача усложняется тем фактом, что промышленные условия эксплуатации зачастую оказываются достаточно агрессивными.

Полимерные и гибридные конденсаторы идеально подходят для промышленных приложений, поскольку они обладают целым рядом важных достоинств:

  • Длительный срок службы. Это преимущество особенно важно для промышленных установок со значительным сроком эксплуатации.
  • Способность выдерживать значительные импульсные токи. Высокие импульсные токи являются следствием работы электродвигателей и емкостной нагрузки.
  • Высокая рабочая температура. В промышленности оборудование зачастую эксплуатируется при повышенных температурах.
  • Высокие рабочие напряжения.
  • Высокая удельная емкость.

В качестве конкретных промышленных приложений для полимерных и гибридных конденсаторов можно привести приводы электродвигателей, силовые инверторы и промышленное освещение. Полимерные конденсаторы, например, POSCAP и SP-Cap могут применяться в системах управления и промышленных контроллерах, благодаря отличным электрическим характеристикам и компактным габаритам.

Заключение

Полимерные конденсаторы выпускаются с 1990 года. При этом они продолжают развиваться, как с точки зрения электрических характеристик, так и с точки зрения уменьшения габаритов. В качестве примера можно рассмотреть линейку многослойных алюминиевых полимерных конденсаторов от Panasonic. Новые модели будут обладать еще меньшим последовательным сопротивлением (от 2 мОм) и еще большей емкостью (до 680 мкФ).

Новые танталовые полимерные конденсаторы также демонстрируют снижение ESR и уменьшение габаритов. Например, от конденсаторов типоразмера B с габаритами 3,5×2,8 мм следует ожидать падения ESR с 9 до 6 мОм.

Линейки гибридных конденсаторов также развиваются. Например, Panasonic предлагает новые модели с напряжениями 16 В и 100 В. Кроме того, срок службы и устойчивость к броскам тока для них будут увеличены.

Эти постоянные технические усовершенствования делают полимерные и гибридные конденсаторы все более привлекательной альтернативой традиционным танталовым конденсаторам и многослойным керамическим конденсаторам (MLCC).

Вы не можете скопировать содержимое этой страницы